29,592 research outputs found

    Sparse Optical Arbitrary Waveform Measurement by Compressive Sensing

    Get PDF
    We propose and experimentally demonstrate a compressive sensing scheme based on optical coherent receiver that recovers sparse optical arbitrary signals with an analog bandwidth up to 25GHz. The proposed scheme uses 16x lower sampling rate than the Nyquist theorem and spectral resolution of 24.4MHz

    Greening Capitalism? A Marxist Critique of Carbon Markets

    Get PDF
    Climate change is increasingly being recognized as a serious threat to dominant modes of social organization, inspiring suggestions that capitalism itself needs to be transformed if we are to ‘decarbonize’ the global economy. Since the Kyoto Protocol in 1997, carbon markets have emerged as the main politico-economic tools in global efforts to address climate change. Newell and Paterson (2010) have recently claimed that the embrace of carbon markets by financial and political elites constitutes a possible first step towards the transformation of current modes of capitalist organization into a new form of greener, more sustainable ‘climate capitalism.’ In this paper, we argue that the institutionalization of carbon markets does not, in fact, represent a move towards the radical transformation of capitalism, but is better understood as the most recent expression of ongoing trends of ecological commodification and expropriation, driving familiar processes of uneven and crisis-prone development. In this paper, we review four critical Marxist concepts: metabolic rift (Foster, 1999), capitalism as world ecology (Moore, 2011a), uneven development and accumulation through dispossession (Harvey, 2003, 2006), and sub-imperialism (Marini, 1972, 1977), developing a framework for a Marxist analysis of carbon markets. Our analysis shows that carbon markets form part of a longer historical development of global capitalism and its relation to nature. Carbon markets, we argue, serve as creative new modes of accumulation, but are unlikely to transform capitalist dynamics in ways that might foster a more sustainable global economy. Our analysis also elucidates, in particular, the role that carbon markets play in exacerbating uneven development within the Global South, as elites in emerging economies leverage carbon market financing to pursue new strategies of sub-imperial expansion. </jats:p

    Overcoming the risk of inaction from emissions uncertainty in smallholder agriculture

    Get PDF
    The potential for improving productivity and increasing the resilience of smallholder agriculture, while also contributing to climate change mitigation, has recently received considerable political attention (Beddington et al 2012). Financial support for improving smallholder agriculture could come from performance-based funding including sale of carbon credits or certified commodities, payments for ecosystem services, and nationally appropriate mitigation action (NAMA) budgets, as well as more traditional sources of development and environment finance. Monitoring the greenhouse gas fluxes associated with changes to agricultural practice is needed for performance-based mitigation funding, and efforts are underway to develop tools to quantify mitigation achieved and assess trade-offs and synergies between mitigation and other livelihood and environmental priorities (Olander 2012)

    Sistem Pengaturan Lampu Lalu Lintas secara Sentral dari Jarak Jauh

    Full text link
    Scheme of traffic light system arrangement in central from long distance to help Dinas Perhubungan (Dishub) in arranging the traffic the traffic light according to the traffic situation

    The biomechanics of the locust ovipositor valves : a unique digging apparatus

    Get PDF
    The female locust has a unique mechanism for digging in order to deposit its eggs deep in the ground. It utilizes two pairs of sclerotized valves to displace the granular matter, while extending its abdomen as it propagates underground. This ensures optimal conditions for the eggs to incubate, and provides them with protection from predators. Here, two major axes of operation of the digging valves are identified, one in parallel to the propagation direction of the ovipositor, and one perpendicular to it. The direction-dependent biomechanics of the locust major, dorsal digging valves are quantified and analyzed, under forces in the physiological range and beyond, considering hydration level, as well as the females’ age, or sexual maturation state. Our findings reveal that the responses of the valves to compression forces in the specific directions change upon sexual maturation to follow their function, and depend on environmental conditions. Namely, in the physiological force range, the valves are resistant to mechanical failure. In addition, mature females, which lay eggs, have stiffer valves, up to roughly nineteen times the stiffness of the pre-mature locusts. The valves are stiffer in the major working direction, corresponding to soil shuffling and compression, compared to the direction of propagation. Hydration of the valves reduces their stiffness but increases their resilience against failure. These findings provide mechanical and materials guidelines for the design of novel non-drilling excavating tools, including 3D-printed anisotropic materials based on composites.Statement of significance The female locust lay its eggs underground in order to protect them from predators and to provide them with optimal conditions for hatching. In order to dig into the ground, it uses two pairs of valves: The ventral pair is plugged as a wedge, while the dorsal pair performs the digging of the oviposition tunnel. We study the mechanical response of the digging valves, depending on age, hydration level and direction of operation. Our findings show that during the course of roughly two weeks in the life of the adult female, the digging valves become up to nineteen-fold stiffer against failure, in order to fulfill their function as diggers. While hydration reduces the stiffness, it also increases the resilience against failure and renders the valves unbreakable within the estimated physiological force range and beyond. The digging valves are consistently stiffer in the digging direction than in the perpendicular direction, implying on their form-follows-function design.Competing Interest StatementThe authors have declared no competing interest

    Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model

    Get PDF
    Photonic spiking neural networks (PSNNs) potentially offer exceptionally high throughput and energy efficiency compared to their electronic neuromorphic counterparts while maintaining their benefits in terms of event-driven computing capability. While state-of-the-art PSNN designs require a continuous laser pump, this paper presents a monolithic optoelectronic PSNN hardware design consisting of an MZI mesh incoherent network and event-driven laser spiking neurons. We designed, prototyped, and experimentally demonstrated this event-driven neuron inspired by the Izhikevich model incorporating both excitatory and inhibitory optical spiking inputs and producing optical spiking outputs accordingly. The optoelectronic neurons consist of two photodetectors for excitatory and inhibitory optical spiking inputs, electrical transistors’ circuits providing spiking nonlinearity, and a laser for optical spiking outputs. Additional inclusion of capacitors and resistors complete the Izhikevich-inspired optoelectronic neurons, which receive excitatory and inhibitory optical spikes as inputs from other optoelectronic neurons. We developed a detailed optoelectronic neuron model in Verilog-A and simulated the circuit-level operation of various cases with excitatory input and inhibitory input signals. The experimental results closely resemble the simulated results and demonstrate how the excitatory inputs trigger the optical spiking outputs while the inhibitory inputs suppress the outputs. The nanoscale neuron designed in our monolithic PSNN utilizes quantum impedance conversion. It shows that estimated 21.09 fJ/spike input can trigger the output from on-chip nanolasers running at a maximum of 10 Gspike/second in the neural network. Utilizing the simulated neuron model, we conducted simulations on MNIST handwritten digits recognition using fully connected (FC) and convolutional neural networks (CNN). The simulation results show 90% accuracy on unsupervised learning and 97% accuracy on a supervised modified FC neural network. The benchmark shows our PSNN can achieve 50 TOP/J energy efficiency, which corresponds to 100 × throughputs and 1000 × energy-efficiency improvements compared to state-of-art electrical neuromorphic hardware such as Loihi and NeuroGrid

    The 'Parekh Report' - national identities with nations and nationalism

    Get PDF
    ‘Multiculturalists’ often advocate national identities. Yet few study the ways in which ‘multiculturalists’ do so and in this article I will help to fill this gap. I will show that the Commission for Multi-Ethnic Britain’s report reflects a previously unnoticed way of thinking about the nature and worth of national identities that the Commission’s chair, and prominent political theorist, Bhikhu Parekh, had been developing since the 1970s. This way of thinking will be shown to avoid the questionable ways in which conservative and liberal nationalists discuss the nature and worth of national identities while offering an alternative way to do so. I will thus show that a report that was once criticised for the way it discussed national identities reflects how ‘multiculturalists’ think about national identities in a distinct and valuable way that has gone unrecognised

    Photonic Interferometric Imager with monolithic silicon CMOS photonic integrated circuits

    Get PDF
    We demonstrate, for the first time to our knowledge, a monolithically-integrated photonic interferometric imager circuit with on-chip detectors, CMOS trans-impedance-amplifiers, and associated photonic imager components. A proof-of-principle demonstration of interferogram fringe generation will be discussed

    Characterisation of campylobacter concisus strains from South Africa using amplified fragment length polymorphism (AFLP) profiling and a genomospecies-specific polymerase chain reaction (PCR) assay: Identification of novel genomospecies and correlation with clinical data

    Get PDF
    Amplified Fragment Length Polymorphism (AFLP) profiling was used to evaluate the distribution of phenotypically indistinguishable, but genetically distinct, among Campylobacter concisus strains from South Africa. A Polymerase Chain Reaction (PCR) assay described for identifying strains belonging to Genomospecies 1 and 2 was applied in this study. Forty-seven C. concisus strains were studied in total, of which 42 were of South African origin. Forty of the South African isolates were assigned to the major existing genomospecies typified by the type strain of oral origin (GS1), and reference strains from bloody diarrhoea (GS2). Eighteen South African isolates were distributed in the GS1 cluster including two oral strains. Twenty-two faecal South African isolates clustered with reference GS2 strains. Two novel genomospecies (GS 5 and 6) were inferred by their AFLP profile characteristics. Use of an existing PCR assay first described for identification of GS1 and GS2 strains generally indicated that the tool was accurate, although the novel genomospecies described here yielded an amplicon in the GS2 assay. No consistent clinical pattern among the diarrhoea South African strains could be discerned. The study extends the known genetic diversity among C. concisus, elucidates the presence of multiple genomospecies in South Africa, and confirms for the first time an association of GS1 with diarrhoea as well as the utility (with caveats) of a PCR assay for identifying GS1 and GS2 strains
    corecore